Medische beeldvorming brengt met steeds geavanceerdere technieken het lichaam van de patiënt in kaart. Het is essentieel voor medisch specialisten tijdens diagnosevorming. Een analyse naar de stappen voor volwassen ziekenhuisbreed beeldmanagement. Na het ziekenhuisbreed beschikbaar maken van beelden, liggen er nog veel uitdagingen in het verschiet op het gebied van ordermanagement, artificial intelligence, patiëntparticipatie en Informatie-uitwisseling.
Lees verderDit artikel gaat in op Lifecycle Management van AI-modellen, op de betrokken stakeholders, de activiteiten en uitdagingen die daarbij komen kijken en gaat dieper in op configuratiebeheer van AI-modellen, monitoring, responsible AI en governance.
Lifecycle Management van AI-modellen
Inhoudsopgave
Lifecycle Management & AI
Stakeholders AI
De AI lifecycle.
Uitdagingen bij AI Lifecycle Management
AI Lifecycle Management in de zorg
Eisen bij zelf ontwikkelen van een AI-oplossing
AI impact assessment
Configuratiebeheer van AI-modellen
Configuratie managementgegevens
Configuratie managementtooling: DSML-platformen
Monitoring and feedback
Modeldrift
Identificeren van modeldrift
Best practices voor monitoren van modellen
Responsible AI en kwaliteitseisen
Responsible AI
Kwaliteitseisen
Governance en verantwoordelijkheden
Governance stappen
Bestanden
Terug naar het overzicht
Gerelateerde publicaties
In gesprek met Chris Peters (klinisch fysicus, Jeroen Bosch Ziekenhuis), Daniël Tijink (MT-lid zorg, strategie en ethiek bij ECP) en Jeroen van Oostrum (partner, M&I/Partners) over AI-trust uit de AI-Routekaart.
Lees verder